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Abstract. A new approach is presented to describe the change in the statistics of the log return distribution
of financial data as a function of the timescale. To this purpose a measure is introduced, which quantifies
the distance of a considered distribution to a reference distribution. The existence of a small timescale
regime is demonstrated, which exhibits different properties compared to the normal timescale regime for
timescales larger than one minute. This regime seems to be universal for individual stocks. It is shown that
the existence of this small timescale regime is not dependent on the special choice of the distance measure
or the reference distribution. These findings have important implications for risk analysis, in particular for

the probability of extreme events.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management

1 Introduction

The origin of mathematical finance dates back to
Bachelier’s famous thesis Théorie De La Spéculation
(see [1]). As a central point in this work a normal dis-
tribution was assumed for financial returns. This assump-
tion was for several reasons later changed by other authors
to a normal distribution for the log return r [2]. The log
return r is defined in the following way:

r(1) :=log(P(t + 7)) — log(P(t)) (1)

where P(t) denotes the price of the investment at time ¢.
For alternative distributions to the log return distribution
we refer to [3-8]. Other attempts [9] focused on the mecha-
nism that may produce such distributions. There remains
a general problem to determine the correct family of dis-
tributions, based on an appropriate underlying stochastic
process, incorporating the dependence of the shape of the
distribution on the timescale.

In the following we focus on the distribution (or the
so called probability density function — pdf), which is
in general dependent on the value of the log return it-
self as well as on the considered timescale. The question
of the dependence of the shape of the distribution on the
time scale was already posed in [2]. Considering changes of
the form of distributions requires to distinguish between
changes due to the mean value, due to the standard devi-
ation, see e.g. [10], and due to the shape, see e.g. [11,12].
A discussion of the importance of risk measures like VaR
and their connection to the underlying distribution can be
found in [13,14].

* e-mail: andreas.nawroth@uni-oldenburg.de

When considering individual stocks, for very large
time scales the normalized distribution is quite similar
to a Gaussian distribution. For small timescales a Non-
Gaussian fat-tailed distribution is obtained. An interest-
ing question now arises. Is this transition from a fat-tailed
distribution towards a Gaussian a smooth and uniform
process? A general non-parametric method, utilizing a
Fokker-Planck equation in timescale, has been proposed,
which provides a general description of how the shape of
the distribution evolves with changing timescale [15]. Al-
though this approach is very general, it is based on as-
sumptions that are partially no longer fulfilled for very
small time scales (typically smaller than several minutes).
Therefore here a specific non-parametric approach is pre-
sented, which provides insight into timescales covering sec-
onds and minutes.

2 Data

In this study tick-by-tick data sets are used, in order
to cover timescales as small as possible. The financial
data sets were provided by the Karlsruher Kapitalmarkt
Datenbank (KKMDB) [16]. The data sets contain all
transactions on IBIS and XETRA in the corresponding
period. The data sets used in this study span from
the beginning of 1993 till the end of 2003 and contain
3—4 x 10° data points. Only stocks with a continuous
history of trading in this period are considered. Results
are presented for the three stocks with the largest number
of trades in this period. These three stocks are Bayer,
Volkswagen (VW) and Allianz. In order to investigate
changes of the shape of the distribution, we analyze in
general normalized distributions and therefore look at
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the normalized return variable R

r—rT

R=——_ (2)
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where the average is taken over the whole data set. In or-
der to compare the findings for stocks to other systems,
the same analysis is performed for a turbulence data set.
The data set was obtained by measuring the local longi-
tudinal and transversal velocity component of a fluid in
the turbulent wake behind a cylinder with a Taylor-based
Reynolds number of 180 and contains 31 x 10° data points.
For more details see [17].

3 Method

A non-parametric approach to the detection of a change
in shape of a distribution is a direct measurement of the
distance between two distributions. pref(R) denotes the
distribution for a reference timescale and p(r, R) the dis-
tribution for another timescale. Firstly this allows verifica-
tion of the frequently proposed assumption of a constant
shape with respect to the timescale. Secondly if the shape
is not constant this provides a quantitative measure of the
size of the change in the shape of the distribution. There-
fore a measure is needed to quantify the distance between
two distributions. Here, the Kullback-Leiber-Entropy is
used, which is defined as [18]

+oo

(3)
In order to demonstrate the independence of our results
on the particular choice of the measure we also use the
weighted mean square error in logarithmic space

dn (p(T, R)apref (R)) = (4)

jfoodR (p(7, R) 4 pref(R))(Inp(7, R) — Inpyer (R))?
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Furthermore the chi-square distance is used as a third
measure

AR (07, B) — pros (R)?
dc(p(7, R), pref (R)) 1= — — . (5)
J AR pres(R)

—00

Using these distance measures it is possible to determine
the distance of a log return distribution calculated for a
certain timescale from a reference distribution.
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Fig. 1. Kullback-Leiber distance to the Gaussian distribution
for three stocks.

4 Evidence of a new universal small timescale
regime

For very large timescales the distribution is quite close to
a Gaussian, therefore the Gaussian distribution is taken
as reference distribution. In Figure 1 the Kullback-Leiber
distance to the Gaussian distribution for three individual
stocks is shown. It is evident, that the behavior changes
considerably for timescales smaller than 100 s. For such
small scales the pdfs of financial data are considerably
different from the Gaussian distribution.

In a second step the distribution of the smallest scale
of the considered asset is chosen as a reference distribu-
tion. In Figure 2 the distance dx to the smallest timescale
for the three stocks is shown, together with the one sigma
error (dotted lines). The error estimate was calculated by
means of sub-samples of the data set to estimate the distri-
bution of the distance measure. Again a transition behav-
ior is seen, indicating a change in the stochastic behavior
in the region 10-100 s. In all three cases the first region
may be characterized by a linear increase of the distance
measure dg. The linear fit for this first region is drawn as
a solid line in Figure 2 (Note the use of semilog plots).

In order to verify if the region displaying linear be-
havior is dependent on the chosen reference timescale, the
analysis has been redone for different reference timescales.
As an illustration, the results for Volkswagen are shown
in Figure 3a. For all these reference distributions the ex-
tent of the linear region (more precisely the upper bound)
does not change. This and similar results for the other as-
sets indicate, that the linear region is independent of the
timescale that was chosen for the reference distribution.
Next we discuss the influence of different distance mea-
sures (Egs. (3)—(5)). As an example the distance to the
smallest timescale for VW is shown in Figure 3b. Similar
results were obtained for other stocks. For comparison all
distance measures were rescaled to the interval [0, 1] in
Figure 3b. For all three distance measures a division of
the timescale in two parts characterized by the different
functional behavior in these parts is evident.

A possible reason for the existence of different domains
may be based on a specific relationship between consecu-
tive increments on different timescales. One way to ana-
lyze this is to destroy all possible causal relationships of
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Fig. 2. The distance measure dx for a reference distribution p,es(R) := p(7 = 1 s, R) for the individual stocks. The dots
represent the estimated value, the dotted lines the one sigma error bound and the solid line the linear fit for the first region.
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Fig. 3. (a) The distance measure dx for Volkswagen. (b) Three different distance measures with p.f(R) = p(7 = 1 s, R)
for Volkswagen. (¢) Comparison of the distance measure dx with pyf(R) = p(r = 1 s, R) for the original and the permuted

Volkswagen data set.

consecutive increments. This can be done by permuting
all increments on a certain timescale (here the timescale
of the reference distribution) and thereby creating a new
time series with the same p,.f(R). This new time series ex-
hibits for small timescales a logarithmic increase in the dis-
tance measure dg, see Figure 3c. Further there is no longer
a division into two distinct timescale intervals with differ-
ent functional behavior of the distance measure dg. It is
therefore evident, that the small timescale regime is due to
functional relationships between consecutive increments.
In order to investigate if the dependencies are linear, the
autocorrelation function (ACF) of the non-uniformly sam-
pled time series is calculated, cf. [19]. The estimator for
the autocorrelation is defined in the following way

N
pn A [Z > (1)~ 7(0)] ©)
X [r(T, tj) — f(T)}b(tj _ ti)‘|
T N
) [ : [ (. ti) = (7] b ti)‘|
o L
% ZZ[7“2(7,753‘)—TQ(T)]b(tj_ti)H
=0 ={5 Ghanie T

where r(7,t;) is the log return on the timescale 7 at the
time ¢; and 0 a small number. The results for the ACF,
computed on a timescale of four seconds, are shown in
Figures 4a, 4b. The computation of the ACF for smaller
timescales becomes increasingly difficult due to the very
small number of available log returns. In agreement with
the literature [7,20], there is a negative autocorrelation
for the smallest lag, while for larger lags the ACF yields
values very close to zero. The ACF of the magnitude of
the log returns is considered in Figure 4b. Here there is a
strong positive autocorrelation for the smallest lag, which
slowly decays for larger lags. However, for both ACFs and
all the considered stocks there is no indication of a small
timescale regime in the ACF. It therefore appears that the
functional relationship between consecutive increments,
which causes the small timescale regime, is of nonlinear
nature.

5 Comparison with turbulence data

In [12,21] it has been shown, that finance and turbulence
data display common properties. The analysis described
above is therefore also performed with turbulence data
in order to see if a small timescale regime is present in
that case as well. In Figure 5 the distances dx of the
distribution of the velocity increments with respect to the
Gaussian distribution (a) and with respect to a small scale
reference distribution (b and ¢) for the turbulence data
are shown. The qualitative behavior for larger timescales
is similar to that observed for individual stocks, while for
smaller timescales the behavior differs. It is important to
note the difference in scale of the distance measure in Fig-
ures 1 and ba.
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Fig. 4. (a) Autocorrelation function of the log returns for three individual stocks. (b) Autocorrelation function of the magnitude

of the log returns for three individual stocks.

a) 008 T ) ) 0.05 e
- ‘-..'2 — longitudinal 1 0.02 longitudinal Sy 0_04-_ transversal N
0.06f %+ e transversal / L i
r b 3 E 0.03 -
o 004 4 X X - .
© i 0.01F - 0.02}- & -
0.02 7 L o - 0.01F s -
0.00 bl v ppd 4 | 0.00 Lvepload® vl 1 vl 3l 1 0.00 [ 11l .l’nf:mul TERTTTT R ETTT . ||||||-|
104 108 102 107 100 105 10% 108 102 101 100 1075 104 103 102 101 100
timescale in sec timescale in sec timescale in sec
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measure dx for a reference distribution p,.;(R) := p(T = 4 x 107> s, R). The dots represent the estimated value, the dotted

lines the one sigma error bound.
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Fig. 6. Comparison between the probability mass beyond the 10th standard deviation (solid line) and dx (dotted line).

6 Applications

How does the specific behavior of the small timescale
regime translate into practical applications? The devia-
tion from the Gaussian distribution is increasing much
faster in the small timescale regime than in the normal
timescale regime. A visual inspection shows, that the con-
sidered log return distributions deviate into the direction
of fat-tailed distributions. Therefore the probability mass
in the tails of the distribution should increase faster by
entering the small timescale regime. In order to analyze
this, the probability mass in the tails of the distribution,
i.e. the probability mass beyond the 10th standard devi-
ation, where left and right tail are considered together, is
calculated and the results are compared to the distance
measure dgi. The reference timescale is one second. The
results are shown in Figure 6. In all three cases it is evi-

dent, that the change of the distance measure corresponds
to a change of probability mass in the tails of the distri-
bution. In the small timescale regime the increase in the
probability mass in the tails of the distribution is very pro-
nounced. The estimates of probability mass, for timescales
larger than 103 s, are rather noisy, due to the effect that
events are quite rare in this region.

7 Conclusions

Summarizing, it has been demonstrated that the proper-
ties of the log return distribution of stocks do not change
uniformly if one goes to smaller timescales. Instead, for
small timescales a distinct regime is entered with different
properties. In this small timescale regime, the shape of
the distribution changes much faster than one would ex-
pect by extrapolating the behavior of the normal timescale
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regime. This small timescale regime extends for individ-
ual stocks to our knowledge from timescales of around
1s to timescales of around 15 s. The small timescale
regime can be characterized by a linear dependence of
the Kullback-Leiber distance dx on the timescale, if as
a reference distribution a log return distribution on a very
small timescale is chosen. In the normal timescale regime
the dependence is much slower and can be assumed to
be logarithmic or for very large timescales independent
of the timescale. This result seems to be independent of
the chosen reference distribution as long as it is a log re-
turn distribution on a sufficiently small timescale. If the
Gaussian distribution is taken as a reference distribution,
d is rising very fast with decreasing timescale in the small
timescale regime, while it stays nearly constant in the nor-
mal timescale regime in accordance with [11]. This indi-
cates a very fast deviation from a Gaussian-like shape in
the small timescale regime. These results could be con-
firmed with different distance measures. Further it has
been shown that this small timescale regime is a specific
feature of the financial data investigated here. For tur-
bulence data no such small timescale regime is observed,
although financial and turbulence data sets exhibit sim-
ilarities in the normal timescale regime. For very small
timescales the shape of the distribution, in contrast to the
findings for the financial data sets, changes slower than
one would expect by extrapolating the behavior of the nor-
mal timescale regime. Two prominent candidates for this
effect are the dissipation on small scales for turbulence [17]
and the noise added by the measurement system. Further-
more the particular small timescale regime for individual
stocks cannot be reproduced by trivial randomized data.
As an application of this new approach it has been demon-
strated that on entering the small timescale regime, a large
increase in the probability mass in the tails of the dis-
tribution occurs, which could lead to very different risk
characteristics in comparison to that of larger timescales.
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